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1. Introduction

Suppose we are required to lake a decision whether or not a given
flew process of production should be adopted in preference to an
old process say P^. While planning an experiment for taking a decision
to this end, we have to keep two propositions in view. At the first
instance, the experiment should be precise enough to enable•us to
arrive at a right type of decision by detecting the smallest possible
gain or loss due to the adoption of the new process. Secondly, the
cost of experiments leading to the decision should not be so large
as to make the experiment uneconomical'; in other words, the cost
incurred on the experiment should be justifiable when judged from
the point of view of the expected gain accruing from the correct,
decision to be arrived at. These two propositions are contradictory
to one another, since the amount of precision is directly related to
the size of the experiment. Hence, there arises a heed for planning
the experiment so as to achieve an optimum balance between the two
propositions. In other words, having realized the importance of
experimental results and the size of gain or loss due to right or wrong
decision, it is required to allocate a reasonable amount of expenditure
and the experimental resources whichmay give results with a reasonable
degree of precision.

Assuming that the cost of the experiment is proportional to the
number of observations to be taken for the experiment, the problem
at hand reduces to the determination of the optimum number of
observations to be taken for deciding between two alternatives, i.e.,
the acceptance of P^ or Pg. For this, the procedure suggested here,
is to define a suitable risk function involving the cost of experimenta
tion and the expected gain which will result if the production process
Pi is rightly accepted. The total risk will be defined as the cost of
experimentation the expected gain. The risk function so defined,
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will naturally involve certain unknown parameters as well as certain
other-constants depending on,the external economic factors of the
decision process. The latter economic factors, can be determined
with" sufficient accuracy from experience and kiidwledge of thfe situa
tions uiider which the" experiment is ,being carried out". As far as the
estimation of the parameters is concerned, it has been suggested that
a-preliminary experiment of a small size say «i be carried out at the
first instance and the, estimates of the parameters obtained from this
small experiment may be properly used in defining the risk function.

, The risk function so defined, has been called the Integral risk-function.
• This function is iiow mainly a function of the additional number of

observations, say Wa required to be determinedi and the estimates of-
the parameters based on the set of values of n-^ observations" in the
first Sample. The problem now', is to see whether or not the risk will
be reduced in case, the experiment is continued one stage further and
the proposed decision is taken on the basis of the results obtained
from the two experiments together, j'.e., on the basis of + tjj observa
tions. In case, the risk involved in continuing the experiment one
stage further, is less than'that in stopping the experiment at the first
stage, i.e., taking decision on the basis of first observations only,
the value .of «2, i.e., the size of theexperiment at. the second stage has
to be determined in such a manner as to possess, certain well-defined,
optimum properties. Once the, optimum number of observations for
the experiment has been determined, it will invariably fix the optimum
amount of precision attached with the decision process, since the two
are directly related. Following this approach,- Grundy and ^others
(1956);.have„de;termined '.the amount of experiments for various cost
situations in the case when the o.bservations in the experiment are
distributed normally, with a known variance (restriction imipokd. in
Grundy's method). The present work deals with the case when the
observations are taken from .a normal population v^ith unknown
variance.

2, Decision Rule for Choosing bet"ween Two .Alternatives

Let us suppose that Xix, Xi2 ••• are the values of-nx observations
in the first experiment of size n^. Each X; denotes the value of net
gain per, .unit of production accruing from adopting the hew process
Pi over the old process Fg. Let bethemean, and the mean square
based on «j observations. Throughout, it will be assumed that all
Xi's are distributed normally with the same unknown mean and the
variance o>2. Clearly, and jj? are .respectively ihe estimates of the
average Aet gain rj and variance Let us say, the first .experiment
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is not found to be sufficient enough to decide whether or not it is worth
while to- adopt the new process in preference to ' Hence, another
independent" experiment 'of size «2 is carried out. This experiment
gives values say, ^2i> ^22> ^^23) •.*' of the net gain. Let be an •
independent estimate of rj. The combined estimate of from two
experiments will be: • '

... , . _ MjXi + «2£2
^ . «!.+ Kg-

The decision rule whether the Pi should be accepted or rejected
is given by:

- accept Pi if X > 0, ; ; -

reject Pi i.e., retain Po if x ^ 0.

The question, whether the first-/ii observations are adequate .or
not for taking the decision and in case they are not, how many more
observations should be taken in prder to arrive at a definite decision
has been discussed in the following paragraph.

3. Definition of the Risk Function

Let P («2, Xi, -q, denote the conditional probability of accept
ing Pi on the basis of the decision rule given in (2) for given values of

. xi and «2. It can easily be seen that: ...

P («2> Vy = P{x> OlHi, Xi, rj, <r®)
"(KiXi+.»2'v)"

where
\

=

-• V'«2

(3.1)

The conditional risk function R = R(n^, Xi, rj, is defined as,
R.= kn^ —M-qP {rii, x-i,,-q, (3.2)

where ' A:' is the cost of taking single observation and ' is a con
stant measuring the scale of production or the units on which Pi will
be recommended.' In the case, where Pj represents the application
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of fertilizers or other improved practices, ' Af' may be taken as units,
say Hectares on which these practices will be applied if the experiment
so recommends. In the case where Pi represents some manufacturing
process, 'M' represents the nunibsr of units which will be manu-

•factured through Pj over a spscified time. It is obvious that the risk
function as defined above, involves the parameters •>? and a® of which
no knowledge is available except their'respective estimates and
5^2 as obtained from the initial small experiment of size n^. There
are two ways by which the risk function can be made independent of
the unknown parameters-. At the first instance, R can be averaged
over an a-priori distribution of r; and if such distribution can be
determined or guessed. Secondly, R can be integrated over the joint
fiducial distribution of t] and (Fisher). As it is not easy to choose
an optimum a-priori distribution of rj and o-^, we may adopt the second
course.

The fiducial distribution /(•»), or'') of -q and a'' is given by,

df(v,o)

X dr,da.
|ni - iV W

2 . .

Hence, the integral risk function of the expected value of R as averaged
over df {-q, o) is given by,

oo oo

R=kn2 —MJ J •q<f>
—OO oo

Integrating over first we get,

where

R = kn, — M

, /fc-Dj. 7(A' +!)(".-3) y1
~ W(«i-3r^.V N{n^-\) '

—

^2. („,-l)/2 2^0-
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/«i-lN=^ I^^An+\)
«i '

X — 7)--A. — Tjj- — .

N

7^ „.-3 W being the ordinate of ' /' distribution with - 3 degree
of freedom at x point and

A, =

= J J x\-,(U) <f>'iV)dUdv.
V <{UK)U

' C/' b;ing tile ciii-square variate with x\,-i iU) distribution and
V the normal variate with the distiibution 6 (K). Or,

where

W =
"(0

dt.

Hence,

R = k?i2 — M

•Vtt {n — T)

. / ^ <! T' ( /(-^ + 1) («i —3)
.V + 1) ("1 - 3^ ^ W X)

(3.4)

or we may preferably put it in the form,

where

(3-5)
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It will be seen that the Integral risk function Q as defined above is a
generalized form of the risk function given by Grundy and others in
the case when is known, viz.,

Q = N- m (6) + (0)] (3.6)

where

N M In1 ^ X

4. Study of the Integral Risk Function

Let us denote,

= JLim Q
N-^O

then,

and

also

A9 = Q~Qo
N N

= 1 - AAr-i/2(7V+l)-i/2

(4.1)- Ml 1^1)

= 2^^ „

i= 1- ")
(4.3)
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and

4Ar6/2 (TV + 1)5/2 ~^2Q

=(4Ar+i)Ar|̂ -Z^(iV+l)(l-^^) (4-4)
From 4.4, it can be seen that for aji ^ 4, is negative in Ihe

neighbourhood of = 0, and continuously increases with N, becoming
positive after passing the value zero. Hence 'dQj'bN initially decreases
from unity and after attaining some minimum value, increases and
attains unity value. Therefore, the shape of Q could be one of the form
given in the following three figures:

Fig. 1 Fig. 2 Fig. 3

In case, the shape of Q is of the form as given in Fig. 1, the

minimum value exists at N = Ng and at. this point the risk Q is less
than the initial risk at iV = 0. Hence, in this case it will be worth
while to conduct additional experiment of size «2 = In case,
the shape be of the form as given in Fig. 2, the minimum value does
not exist hence no. further experimentation need be carried out.
Similarly, Fig. 3 shows that although the minimum value exists
at some N = No, however, at this point, the risk involved is more than
that the one at iV = 0. Hence, in both these latter cases it will not
pay to carry out experimentation beyond the first stage.--/.e., the decision
based on the first observations will be as good as that taken on the
basis of any additional amount of experimentation.
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Now, referring to Fig. 1 and from (4.1) and (4.2), ii can be seen

that the minimum value of ' iV' given by the equation SQ/STV = 0, i.e.,

(4.5)

will be an absolute minimum if the inequality.

2^0+1 ^ .1^1 (-
+2'

V(N)
is atisfied, where

' Na' is the larger value obtained by solving ihe Equation (4.5).

The explicit solution of the Equation (4.5) is rather difficult. How
ever, one can easily get a graphical solution of this equation by drawing
a Nomogram for various values of i\. The Nomograms given in
appendix have been drawn for = 4, 5 and 6. With the help of these
Nomogram the value of could be determined for given values
of and X= MIKn{-"- corresponding to values of

= 4, 5 and 6. ,

5. To Show that the Rule given above is Admissible

We have

(xi, Ji, v> 'h) = '̂«2 - li'vP(^ > 0 In^, Xj, -q, 5).

Hence, the unconditional risk attached with the decision process can
be put as,

^ iv, '>.'/')=/ J' [^"i, Ji, v> o') </" (.X, i-j)] df(xiS])
—OO 0

where/(a'i, is the joint density function of and and >p (x^, jj)
= K2; it being assumed that i/> is the function which defines ' ' in
terms, of and s^.

Let us now assume that ^ (x^, is measurable and E [i/t (xj,
is finite.

Kence E(P) and £(^2) aie continuous functions.

5
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Fig. 4, Nomogram for A', A and AT when «i=4
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Fig. 6. Nomogram for X, A and iVwhen ni=6

If we define,

^0 (v> 'I') —R (v, 'P) = iv, Xp Si, n.2) - R (7? A-j, Sj, n.)

= + Ml] if Tj > 0

= 0 if ^<0,
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then by expressing

JJJJ Iv, Xi, Si, iP (Xi, Ji)] df (Xi, Jj) diqdcr

as a repeated integral in two possible ways (since i?j is a continuous
function, the inversion of the order of integral is permissible), we
obtain the identity

CO OO . OO CO

J J -Ro (71, dr]dcr = J ; (Xj, s^, n^) dx^dsj^ = W(</.).
—00 0 —00 0

If if) is so chosenthat W(s/r) is minimum for all >p, the integral on
the left-hand side is also minimised. Hence, there exists no iji {n{, jj)
which has the risk (rj, a, t/i) as small as the one given by the rule
given here for all rj and o-, and smaller for some -q and a. Hence, the
rule given here is admissible.

6. Concluding Remarks

From theoretical point of view, the decision rule discussed above
raises two important issues. Firstly, the rule for rejecting or accepting
the hypothesis is based on the positive or negative sign of the mean.
This procedure seems to be sound on intuitive grounds, but one does
not know how does it compare with the more powerful procedure
based on ' ?' test. The optimum properties of sign rule have been
considered by K. Matusita (1951). However, since the alternative
procedure based on ' i' criterion by no means yields to an easy solu
tion, the procedure suggested here could serve as a guiding principle
for the choice of the amount of experimentation. Secondly, while
deriving the solution, the controversial idea of fiducial probability
has been used. This, however, has been done under the circumstances
where it is difficult or rather impossible to suggest any suitable a-priori
joint distribution of mean and the variance of the underlying normal
population. But whatever be the objection to the use of fiducial
distribution, it has been shown that the procedure based on this
distribution is an admissible one. Because of this property, the
decision rule given here could be regarded as an optimum one.

From practical point of view, it may be hard to determine values
of the constantslike ' M ' and "k\ Again, since the process'will be
retained for a certain period of time, it is difficult to say for what exact
period the value of M should be determined. It may be safer to take
a reasonably longer period so that even if there is small gain from the
change over to new process, this becomes substantial when the extent
pf application is fairly large and is repeated over a course of time,
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Whatever the case may be, the importance of determining the optimum
amount of experimentation could hardly be minimized especially
in situations involving exhorbitant cost of experimentation. And
the discussion given above serves as a guiding principle.

The method of determining the amount of experimentation for
the second stage has been explained in the examples below

Example.—Under simple fertilizer trials in cultivators' fields on
paddy crop during the year 1962-63, the following responses were
obtained to 20 Ib./acre doze of nitrogen in each of the initial five experi
ments conducted at one of the centres in Lucknow District of U.P. The
total area ilnder paddy in the centre is reported to be 20 thousand
acres. It has been estimated that the cost of conducting single experiment
comes to Rs. 60. This includes the cost of fertilizer, salary of the
field staff and cost of statistical analysis. The additional cost of
fertilizer alone comes to Rs. 18 per acre; however, if the cost of applying
the fertilizer is also included, the additional cost of fertilizer applica
tion comes to Rs. 24 per acre. Hence, unless the additional yield from
the fertilizer application exceeds Rs. 24. per acre, it will not be worth
while to recommend the fertilizer. The price of paddy in the district
has been reported to be Rs. 12 per maund.

Experiment Response in
No. md./acre

1 1-52

2 1-82

3 1-88

4 1-25

. • , 5 3-15

Average response = 1•92 md./acre.

Mean square of the response = 0-5340 (md./acre)^.

In this case, the values of different quantities occurring in a: and
A are as follows:

= 5, Af = 20,000 acres, /c = Rs. 60,
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= Price of paddy X average response —additional cost of
fertilizer application.

= 12 X 1-92 — 24 in case, the cost of spraying the ferti
lizer in the field is taken into account.

= — 0-96 Rs./acre,

= 12 X 1-92—18 incase, the cost of fertilizer alone is
taken into account.

= 5-04 Rs./acre.

= VO- 5340 Xprice of paddy:

= 0-73 X 12 = 8-75 Rs./acre.

Hence

= -0-24 or +1-28

and

^ = —r~
= 262 Rs.

The values of N for = 5 as seen from the table, are 5-6, when
A'= —0-24 and 2-4, when Z=l-28. For both these values of
N, it can be seen that" the inequality,

2iv + 1 ^ (- Ig )
2N +2

is satisfied. Hence the number of experiments in the second stage
should be 12 or 28.
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APPENDIX

As shown in (4.5), the amount of additional experimentation

«2 = will be determined by the larger root ' TV' of the equation.

+!)•" - n.-.(^:^»)
where,

and

z =
/?i/2

Table I

Values of additional number of experiments relative to n^ = 4

V 100 S50 600 750 lOCO 1250 1500 2000 2500 3000

0.2 4-2 7-2 10-5 12-6 14-7 .10-8 18-8 : 21 23 25

0-4 4-0 6-8 9-6 12-0 14-4 16-0 17-5 20 22 24

0-6 3-6 6-0' S-7 11-2 13-2 14-8 16-2 19 21 23

0-8 3-0 5^2 8-0 10-0 11-8 13-2 14-6 17-4 19-0 20-5

1-0 2-6 4-6 7-1 8-9 10-7 12-0 13-4 15-6 17-4 18-S

1-2 2-2 4-2 6-2 7-8 9-4 10-8 12-0 14-1 15-0 17-0

1-4 1-8 3-8 .5-6 7.1 8-4 9-6 10-6 12-6 U-1 lo-6

1-6 1-5 3-4 5-2 6-.1 7-C 8-6 9-G 11-4 13-0 14-3

1-iB 1-2 . 3-0 4-4 5-6 6-8 7-8 8-6 10-2 11-6 12-9

2-0 0-5 2-6 3-9 5-1 6-1 7-1 7-8 9-2 10-5 11-7

2-2 0-6 2-2 3-6 4-4 5-7 6-4 7-0 8-4 9-6 10-8

2-4 0-3 2-0 3-4 4-4 5-3 6-0 6-6 7-8 8-4 9-9

2-6 0 1-7 3-0 3-9 4-8 5-6 6-0 7-2 8-2 9-2

2-8 0 1-5 2-8 3-G 4-3 S'O 5-7 6-6 7-6 8-4

3.0 0 1-4 2-4 3-4 3-9 4'5 5-2 6-1 7-0 7-9
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Table 11

Values of additional number of experiments relative to = 5

\
\ X

100 250 500 750

1

1000 1250 1500 2000 2500 3000

•20 3-2 6-0 8-4 10-8 12-6 14^4 16-2 18-6 21^0 23-5

•40 2-8 5^2 8-0 10^0 11^8 13^6 15-2 18-0 20^0 22 0

•60 2-4 4-6 7-2 9-2 10-4 12^0 13-8 IG-Z 18-0 19-5

o
CO

1-9 3-9 C-2 8-0 9^2 10-4 11-6 13-8 15*6 17-8

1-0 1^3 3-1 5^3 6-8 8-0 9-0 10-0 11-6 13-4 15-0

1-2 0^7 2-6 4-3 5^6 6^G 7^6 8-4 10-0 11^2 12^2

1.4 0 1^9 3-4 4-8 5^6 6^1 7-2 8-0 9-6 10^7

1-6 0 1^4 2^8 3^9 4-8 5^6 6^0 .7-2 8^2 9-2

1^8 0 I-O 2^2 3^2 3-9 4^6 5'2 6-0_ 7-0 8^0

2-0 0 0 1-8 2-7 3^3 3-9 4-5 5^3 6-1 6^9

2^2 0 0 1-3 2-0 2-7 3^2 3-7 4-6 6-4 5^9

2-4 0 0 0-9 1-7 £•2 2^7 3^1 3^S 4-6 5-2

2^6 0 0 0 1-2 [•9 2-3 2-7 3-3 3-9 4-2

2-8 0 0 0 0-8 1-4 1-8 2-2 2^8 3-3 3-8

3^0 0 0 0 0 M 1^5 1-8 2^4 2-9 3-3

r„_i (x) being the ordinate of ' t' distribution at x. The value of
N given from the equation does not depend upon the sign of X value.
The graphic solution of the above equation can be obtained by drawing
nomograms for different values of n-^. The nomograms, have been
drawn for «! = 4, 5 and 6. Each nomogram consists of two straight
line scales each corresponding to ' X' and A and one curved scale
corresponding to N. For obtaining the solution, a straight hne is to
be drawn joining the given values of X and Aon the respective scales.
The point where this line cuts the scale for N reads the values of opti
mum N in addition to the inequahty
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Table III

Values of additional number of experiments relative to —6

75

\

\
\

100 250 500 750 1000 1250 1500 2000 2500 3000

•20 3^4 6^2 9^8 ll^S 13^2 15-0 16-2 18^4 20^5 22^0

•40 3^0 6^0 S^S 10-8 12^0 13^6 15^0 18^0 19-5 21-0

•60 2^0 4^4 6^4 8^4 10^0 11^2 12^0 14^6 16^2 17^4

•80 1^2 3-4 ^•2 6^S 8^0 g^o 10-0 11-6 13^2 15^0

1^0 0 2^4 4-0 5^2 6^4 7^6 8^4 9-6 ll^O' 12-0

1-2 0 1-5 3^0 ^•O 4-8 5^0 6-4 7^8 8*7 9-6

1^4 0 0 2^0 3^0 3 8' 4.4 4-8 6-0 6^9 7^9

1^6 0 0 1^0 1^9 2^6 3-2 3^7 4-4 5^2 6-0

1^8 0 0 0 M 1.8 ' 2^3 2-8 3^4 4-0 4^5

2^0 0 0 0 0 0 1-5 1^9 2-3 3^1 3-7

2-2 0 0 0 0 0 0 1-1 1-8 2-3 2^9

2^4 0 0 0 0 0 0 . 0 1-1 1-7 2^1

2-6 0 0 0 0 0 0 • 0 0 0 1-4

2^8 0 0, 0 0 0 0 0 0 0 0

3^0 0 0 0 ' 0 0 0 0 0 0 0

2N+\

2N+2

e|)

being satisfied. Otherwise the value of N will be taken to be zero.

With the help of these nomograms, tables giving the values of N,.
have been prepared for Z= 0-20 to 3-0 and A= 100 to 3,000,


